Torsional Alfvén Wave Cascade and Shocks Evolving in Solar Jets

Author:

Farahani S. Vasheghani,Hejazi S. M.,Boroomand M. R.

Abstract

Abstract The aim of this study is to model the nature of nonlinear torsional magnetohydrodynamic waves propagating in solar jets as they are elevated to the outer solar atmosphere. The contribution of sequential processes to the transfer of energy is taken under consideration: the nonlinear cascade and shock formation. Thus a straight magnetic cylinder embedded in a plasma with an initial magnetic field and parallel flow to the cylinder axis is implemented. To resemble a jet where the oscillation wavelength highly exceeds the radius, the second-order thin flux tube approximation proves adequate. A Cohen–Kulsrud type equation is presented, and its solution highly depends on the parameter presented in this study, which itself is constituted of various environmental and equilibrium conditions that affect the perturbations of the variables as well as the nonlinear forces connected to Alfvén wave propagation. The shock formation time of torsional waves is inversely proportional to the density contrast of the jet, while the efficiency of energy transfer to shorter scales is directly proportional to the density contrast. While the parallel flow with a shear at the boundary expedites shock formation, its efficiency regarding energy transfer is dramatically enhanced by the plasma-β, significantly contributing to coronal heating. The observational and seismological aspect of the present study is that faster jets are less probable for observations at higher altitudes, as they experience energy transfer mostly at the base of the corona, while slow speed jets may be observed at higher altitudes contributing to solar wind acceleration.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3