Electromagnetic Emission Produced by Three-wave Interactions in a Plasma with Continuously Injected Counterstreaming Electron Beams

Author:

Annenkov V. V.ORCID,Volchok E. P.ORCID,Timofeev I. V.ORCID

Abstract

Abstract Three-wave interactions between Langmuir and electromagnetic waves in plasma with unstable electron flows are believed to be the main cause of type II and III solar radio emissions. The narrow band of type II bursts requires assuming that this radiation is generated in some local regions of shock fronts traveling in the solar corona, where the specific conditions for the enhancement of electromagnetic emissions near the plasma frequency harmonics are created. The reason for such enhancement at the second harmonic may be the formation of counterstreaming electron beams. There are different opinions in the literature on whether the second harmonic electromagnetic emission in the presence of an additional beam can be efficient enough to markedly dominate emissions produced by a single beam. In the present paper, we carry out particle-in-cell simulations of the collision of two symmetric electron beams in plasma with open boundary conditions and show that the efficiency of beam-to-radiation power conversion can be significantly increased compared to models with periodic boundary conditions and reach the level of a few percent if three-wave interactions with electromagnetic waves near the second harmonic of the plasma frequency becomes available for the most unstable, oblique, beam-driven modes.

Funder

Российский Фонд Фундаментальных Исследований (РФФИ)

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3