WALLABY Pilot Survey: H i in the Host Galaxy of a Fast Radio Burst

Author:

Glowacki M.ORCID,Lee-Waddell K.ORCID,Deller A. T.ORCID,Deg N.,Gordon A. C.ORCID,Grundy J. A.ORCID,Marnoch L.ORCID,Shen A. X.,Ryder S. D.ORCID,Shannon R. M.ORCID,Wong O. I.ORCID,Dénes H.ORCID,Koribalski B. S.ORCID,Murugeshan C.,Rhee J.ORCID,Westmeier T.,Bhandari S.ORCID,Bosma A.ORCID,Holwerda B. W.ORCID,Prochaska J. X.ORCID

Abstract

Abstract We report on the commensal ASKAP detection of a fast radio burst (FRB), FRB 20211127I, and the detection of neutral hydrogen (H i) emission in the FRB host galaxy, WALLABY J131913–185018 (hereafter W13–18). This collaboration between the CRAFT and WALLABY survey teams marks the fifth, and most distant, FRB host galaxy detected in H i, not including the Milky Way. We find that W13–18 has an H i mass of M HI = 6.5 × 109 M , an H i-to-stellar mass ratio of 2.17, and coincides with a continuum radio source of flux density at 1.4 GHz of 1.3 mJy. The H i global spectrum of W13–18 appears to be asymmetric, albeit the H i observation has a low signal-to-noise ratio (S/N), and the galaxy itself appears modestly undisturbed. These properties are compared to the early literature of H i emission detected in other FRB hosts to date, where either the H i global spectra were strongly asymmetric, or there were clearly disrupted H i intensity map distributions. W13–18 lacks a sufficient S/N to determine whether it is significantly less asymmetric in its H i distribution than previous examples of FRB host galaxies. However, there are no strong signs of a major interaction in the optical image of the host galaxy that would stimulate a burst of star formation and hence the production of putative FRB progenitors related to massive stars and their compact remnants.

Funder

Department of Education and Training ∣ Australian Research Council

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3