Probing Electromagnetic Gravitational-wave Emission Coincidence in a Type I Binary-driven Hypernova Family of Long Gamma-Ray Bursts at Very High Redshift

Author:

Bianco C. L.ORCID,Mirtorabi M. T.ORCID,Moradi R.ORCID,Rastegarnia F.,Rueda J. A.ORCID,Ruffini R.ORCID,Wang 王 Y. 瑜ORCID,Della Valle M.ORCID,Li 李 Liang 亮ORCID,Zhang 张 S. R. 书瑞

Abstract

Abstract The repointing time of the X-Ray Telescope (XRT) instrument on the Neil Gehrels Swift Observatory satellite has posed challenges in observing and studying the early X-ray emissions within ≈40 s after a gamma-ray burst (GRB) trigger. To address this issue, we adopt a novel approach that capitalizes on the cosmological time dilation in GRBs with redshifts ranging from 3 to 9. Applying this strategy to Swift/XRT data, we investigate the earliest X-ray emissions of 368 GRBs from the Swift catalog, including short and long GRBs. We compare the observed time delay between the GRB trigger and the initial Swift/XRT observation, measured in the GRB observer frame, and the corresponding cosmological rest-frame time delay (RTD). This technique is here used in the analysis of GRB 090423 at z = 8.233 (RTD ∼8.2 s), GRB 090429B at z ≈ 9.4 (RTD ∼10.1 s), and GRB 220101A at z = 4.61 (RTD ∼14.4 s). The cosmological time dilation enables us to observe the very early X-ray afterglow emission in these three GRBs. We thus validate the observation of the collapse of the carbon–oxygen core and the coeval newborn neutron star (νNS) formation triggering the GRB event in the binary-driven hypernova (BdHN) scenario. We also evidence the νNS spin-up due to supernova ejecta fallback and its subsequent slowing down due to the X-ray/optical/radio synchrotron afterglow emission. A brief gravitational-wave signal may separate the two stages owing to a fast-spinning νNS triaxial-to-axisymmetric transition. We also analyze the long GRB redshift distribution for the different BdHN types and infer that BdHNe II and III may originate the NS binary progenitors of short GRBs.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3