The 3D Kinematics of the Orion Nebula Cluster. II. Mass-dependent Kinematics of the Inner Cluster

Author:

Wei 魏 Lingfeng 凌枫ORCID,Theissen Christopher A.ORCID,Konopacky Quinn M.ORCID,Lu Jessica R.ORCID,Hsu Chih-ChunORCID,Kim DongwonORCID

Abstract

Abstract We present the kinematic analysis of 246 stars within 4 from the center of Orion Nebula Cluster (ONC), the closest massive star cluster with active star formation across the full mass range, which provides valuable insights in the formation and evolution of star cluster on an individual-star basis. High-precision radial velocities and surface temperatures are retrieved from spectra acquired by the NIRSPEC instrument used with adaptive optics (NIRSPAO) on the Keck II 10 m telescope. A 3D kinematic map is then constructed by combining with the proper motions previously measured by the Hubble Space Telescope Advanced Camera for Surveys/WFPC2/WFC3IR and Keck II NIRC2. The measured root-mean-squared velocity dispersion is 2.26 ± 0.08 km s−1, significantly higher than the virial equilibrium’s requirement of 1.73 km s−1, suggesting that the ONC core is supervirial, consistent with previous findings. Energy equipartition is not detected in the cluster. Most notably, the velocity of each star relative to its neighbors is found to be negatively correlated with stellar mass. Low-mass stars moving faster than their surrounding stars in a supervirial cluster suggests that the initial masses of forming stars may be related to their initial kinematic states. Additionally, a clockwise rotation preference is detected. A weak sign of inverse mass segregation is also identified among stars excluding the Trapezium stars, although it could be a sample bias. Finally, this study reports the discovery of four new candidate spectroscopic binary systems.

Funder

National Science Foundation

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3