Radius-dependent Spin Transition of Dark Matter Halos

Author:

Moon Jun-SungORCID,Lee JounghunORCID

Abstract

Abstract A numerical detection of the radius-dependent spin transition of dark matter halos is reported. Analyzing the data from the IllustrisTNG simulations, we measure the halo spin vectors at several inner radii within the virial boundaries and investigate their orientations in the principal frames of the tidal and velocity shear fields, called the Tweb and Vweb, respectively. The halo spin vectors in the high-mass section exhibit a transition from the Tweb intermediate to major principal axes as they are measured at more inner radii, which holds for both the dark matter and baryonic components. The radius threshold at which the transition occurs depends on the smoothing scale, R f , becoming larger as R f decreases. For the case of the Vweb, the occurrence of the radius-dependent spin transition is witnessed only when R f ≥ 1 h −1 Mpc. Repeating the same analysis but with the vorticity vectors, we reveal a critical difference from the spins. The vorticity vectors are always perpendicular to the Tweb (Vweb) major principal axes, regardless of R f , which indicates that the halo inner spins are not strongly affected by the generation of vorticity. It is also shown that the halo spins, as well as the Tweb (Vweb) principal axes, have more directional coherence over a wide range of radial distances in the regions where the vorticity vectors have higher magnitudes. The physical interpretations and implications of our results are discussed.

Funder

National Research Foundation of Korea

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3