Internal Structure of Molecular Gas in a Main-sequence Galaxy With a UV Clump at z = 1.45

Author:

Ushio KaitoORCID,Ohta KoujiORCID,Maeda FumiyaORCID,Hatsukade BunyoORCID,Yabe KiyotoORCID

Abstract

Abstract We present results of subarcsec Atacama Large Millimeter/submillimeter Array observations of CO(2–1) and CO(5–4) toward a massive main-sequence galaxy at z = 1.45 in the Subaru-XMM/Newton Deep Survey/UDS field, aiming at examining the internal distribution and properties of molecular gas in the galaxy. Our target galaxy consists of the bulge and disk, and has a UV clump in the Hubble Space Telescope images. The CO emission lines are clearly detected, and the CO(5–4)/CO(2–1) flux ratio (R 52) is ∼1, similar to that of the Milky Way. Assuming a metallicity-dependent CO-to-H2 conversion factor and a CO(2–1)/CO(1–0) flux ratio of 2 (the Milky Way value), the molecular gas mass and the gas-mass fraction (f gas = ratio of the molecular gas mass to the molecular gas mass + stellar mass) are estimated to be ∼1.5 × 1011 M and ∼0.55, respectively. We find that R 52 peak coincides with the position of the UV clump and that its value is approximately twice higher than the galactic average. This result implies a high gas density and/or high temperature in the UV clump, which qualitatively agrees with a numerical simulation of a clumpy galaxy. The CO(2–1) distribution is well represented by a rotating-disk model, and its half-light radius is ∼2.3 kpc. Compared to the stellar distribution, the molecular gas is more concentrated in the central region of the galaxy. We also find that f gas decreases from ∼0.6 at the galactic center to ∼0.2 at three times the half-light radius, indicating that the molecular gas is distributed in the more central region of the galaxy than stars and seems to be associated with the bulge rather than with the stellar disk.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3