Abstract
Abstract
Turbulent magnetic reconnection has been observed by spacecraft to occur commonly in terrestrial magnetosphere and the solar wind, providing a new scenario of kinetic scale magnetic reconnection. Here by imposing a turbulent forcing on ions in particle-in-cell simulations, we simulate kinetic scale turbulent magnetic reconnection. We find formation of fluctuated electric and magnetic fields and filamentary currents in the diffusion region. Reconnection rate does not change much compared to that in laminar Hall reconnection. At the X-line, the electric and magnetic fields both exhibit a double power-law spectrum with a spectral break near local lower-hybrid frequency. The energy conversion rate is high in turbulent reconnection, leading to significant electron acceleration at the X-line. The accelerated electrons form a power-law spectrum in the high energy range, with a power-law index of about 3.7, much harder than one can obtain in laminar reconnection.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献