Thermal Structure and Millimeter Emission from a Protoplanetary Disk with Embedded Protoplanets from Radiative Transfer Modeling

Author:

Alarcón FelipeORCID,Bergin Edwin A.ORCID

Abstract

Abstract The discovery of protoplanets and circumplanetary disks provides a unique opportunity to characterize planet formation through observations. Massive protoplanets shape the physical and chemical structure of their host circumstellar disk by accretion, localized emission, and disk depletion. In this work, we study the thermal changes induced within the disk by protoplanet accretion and synthetic predictions through hydrodynamical simulations with postprocessed radiative transfer with an emphasis on radio millimeter emission. We explored distinct growth conditions and varied both planetary accretion rates and the local dust-to-gas mass ratios for a protoplanet at 1200 K. The radiative transfer models show that beyond the effect of disk gaps, in most cases, the circumplanetary disk (CPD) and the planet’s emission locally increase the disk temperature. Moreover, depending on the local dust-to-gas depletion and accretion rate, the presence of the CPD may have detectable signatures in millimeter emission. It also has the power to generate azimuthal asymmetries that are important for continuum subtraction. Thus, if other means of detection of protoplanets are proven, the lack of corresponding evidence at other wavelengths can set limits on their growth timescales through a combined analysis of the local dust-to-gas ratio and the accretion rate.

Funder

National Science Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3