Two of a Kind: Comparing Big and Small Black Holes in Binaries with Gravitational Waves

Author:

Farah Amanda M.ORCID,Fishbach MayaORCID,Holz Daniel E.ORCID

Abstract

Abstract When modeling the population of merging binary black holes, analyses have generally focused on characterizing the distribution of primary (i.e., more massive) black holes in the binary, while using simplistic prescriptions for the distribution of secondary masses. However, the secondary mass distribution and its relationship to the primary mass distribution provide a fundamental observational constraint on the formation history of coalescing binary black holes. If both black holes experience similar stellar evolutionary processes prior to collapse, as might be expected in dynamical formation channels, the primary and secondary mass distributions would show similar features. If they follow distinct evolutionary pathways (for example, due to binary interactions that break symmetry between the initially more massive and less massive stars), their mass distributions may differ. We present the first analysis of the binary black hole population that explicitly fits for the secondary mass distribution. We find that the data is consistent with a ∼30 M peak existing only in the distribution of secondary rather than primary masses. This would have major implications for our understanding of the formation of these binaries. Alternatively, the data is consistent with the peak existing in both component mass distributions, a possibility not included in most previous studies. In either case, the peak is observed at 31.4 2.6 + 2.3 M , which is shifted lower than the value obtained in previous analyses of the marginal primary mass distribution, placing this feature in further tension with expectations from a pulsational pair-instability supernova pileup.

Funder

National Science Foundation

Publisher

American Astronomical Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3