Abstract
Abstract
The plasmoid formation in collisionless plasmas, where magnetic reconnection within turbulence may take place driven by the electron inertia, is analyzed. We find a complex situation in which, due to the presence of strong velocity shears, the typical plasmoid formation, observed to influence the energy cascade in the magnetohydrodynamic context, has to coexist with the Kelvin–Helmholtz (KH) instability. We find that the current density layers may undergo the plasmoid or the KH instability depending on the local values of the magnetic and velocity fields. The competition among these instabilities affects not only the evolution of the current sheets, that may generate plasmoid chains or KH-driven vortices, but also the energy cascade, that is different for the magnetic and kinetic spectra.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献