A Refined Model of Convectively Driven Flicker in Kepler Light Curves

Author:

Van Kooten Samuel J.ORCID,Anders Evan H.ORCID,Cranmer Steven R.ORCID

Abstract

Abstract Light curves produced by the Kepler mission demonstrate stochastic brightness fluctuations (or flicker) of stellar origin which contribute to the noise floor, limiting the sensitivity of exoplanet detection and characterization methods. In stars with surface convection, the primary driver of these variations on short (sub-eight-hour) timescales is believed to be convective granulation. In this work, we improve existing models of this granular flicker amplitude, or F 8, by including the effect of the Kepler bandpass on measured flicker, by incorporating metallicity in determining convective Mach numbers, and by using scaling relations from a wider set of numerical simulations. To motivate and validate these changes, we use a recent database of convective flicker measurements in Kepler stars, which allows us to more fully detail the remaining model-prediction error. Our model improvements reduce the typical misprediction of flicker amplitude from a factor of 2.5–2. We rule out rotation period and strong magnetic activity as possible explanations for the remaining model error, and we show that binary companions may affect convective flicker. We also introduce an envelope model that predicts a range of flicker amplitudes for any one star to account for some of the spread in numerical simulations, and we find that this range covers 78% of observed stars. We note that the solar granular flicker amplitude is lower than most Sun-like stars. This improved model of convective flicker amplitude can better characterize this source of noise in exoplanet studies as well as better inform models and simulations of stellar granulation.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solar photospheric spectrum microvariability;Astronomy & Astrophysics;2023-10-30

2. An Atlas of Convection in Main-sequence Stars;The Astrophysical Journal Supplement Series;2022-08-24

3. Scaling relations of convective granulation noise across the HR diagram from 3D stellar atmosphere models;Monthly Notices of the Royal Astronomical Society;2022-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3