The Origin of the [C ii] Deficit in a Simulated Dwarf Galaxy Merger-driven Starburst

Author:

Bisbas Thomas G.ORCID,Walch StefanieORCID,Naab ThorstenORCID,Lahén NataliaORCID,Herrera-Camus RodrigoORCID,Steinwandel Ulrich P.ORCID,Fotopoulou Constantina M.,Hu Chia-YuORCID,Johansson Peter H.ORCID

Abstract

Abstract We present [C ii] synthetic observations of smoothed particle hydrodynamics (SPH) simulations of a dwarf galaxy merger. The merging process varies the star formation rate (SFR) by more than three orders of magnitude. Several star clusters are formed, the feedback of which disperses and unbinds the dense gas through expanding H ii regions and supernova (SN) explosions. For galaxies with properties similar to the modeled ones, we find that the [C ii] emission remains optically thin throughout the merging process. We identify the warm neutral medium ( 3 < log T gas < 4 with χ HI > 2χ H2) to be the primary source of [C ii] emission (∼58% contribution), although at stages when the H ii regions are young and dense (during star cluster formation or SNe in the form of ionized bubbles), they can contribute ≳50% to the total [C ii] emission. We find that the [C ii]/far-IR (FIR) ratio decreases owing to thermal saturation of the [C ii] emission caused by strong far-UV radiation fields emitted by the massive star clusters, leading to a [C ii] deficit medium. We investigate the [C ii]−SFR relation and find an approximately linear correlation that agrees well with observations, particularly those from the Dwarf Galaxy Survey. Our simulation reproduces the observed trends of [C ii]/FIR versus ΣSFR and ΣFIR, and it agrees well with the Kennicutt relation of SFR−FIR luminosity. We propose that local peaks of [C ii] in resolved observations may provide evidence for ongoing massive cluster formation.

Funder

Deutsche Forschungsgemeinschaft

EC ∣ European Research Council

Academy of Finland

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3