The R-Process Alliance: Chemodynamically Tagged Groups. II. An Extended Sample of Halo r-process-enhanced Stars

Author:

Shank DerekORCID,Beers Timothy C.ORCID,Placco Vinicius M.ORCID,Gudin DmitriiORCID,Catapano ThomasORCID,Holmbeck Erika M.ORCID,Ezzeddine RanaORCID,Roederer Ian U.ORCID,Sakari Charli M.ORCID,Frebel AnnaORCID,Hansen Terese T.ORCID

Abstract

Abstract Orbital characteristics based on Gaia Early Data Release 3 astrometric parameters are analyzed for ∼1700 r-process-enhanced (RPE; [Eu/Fe] > +0.3) metal-poor stars ([Fe/H] ≤ −0.8) compiled from the R-Process Alliance, the GALactic Archaeology with HERMES (GALAH) DR3 survey, and additional literature sources. We find dynamical clusters of these stars based on their orbital energies and cylindrical actions using the HDBSCAN unsupervised learning algorithm. We identify 36 chemodynamically tagged groups (CDTGs) containing between five and 22 members; 17 CDTGs have at least 10 member stars. Previously known Milky Way (MW) substructures such as Gaia-Sausage-Enceladus, the splashed disk, the metal-weak thick disk, the Helmi stream, LMS-1 (Wukong), and Thamnos are reidentified. Associations with MW globular clusters are determined for seven CDTGs; no recognized MW dwarf galaxy satellites were associated with any of our CDTGs. Previously identified dynamical groups are also associated with our CDTGs, adding structural determination information and possible new identifications. Carbon-enhanced metal-poor RPE (CEMP-r) stars are identified among the targets; we assign these to morphological groups in a Yoon–Beers A(C) c versus [Fe/H] diagram. Our results confirm previous dynamical analyses that showed RPE stars in CDTGs share common chemical histories, influenced by their birth environments.

Funder

Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3