Lyα Absorption in a “Croissant-like” Heliosphere

Author:

Powell ErickORCID,Opher MeravORCID,Kornbleuth Marc Z.ORCID,Baliukin Igor,Michael Adam T.ORCID,Wood Brian E.ORCID,Izmodenov VladislavORCID,Toth GaborORCID,Tenishev Valeriy

Abstract

Abstract Lyα absorption profiles have been used to detect astrospheres and heliospheric absorption from the hydrogen wall and heliotail. Using magnetohydrodynamic models of the heliosphere, we can compare simulated to observed Lyα profiles to probe the neutral hydrogen within and near the heliosphere. There is an ongoing controversy whether the heliosphere has a long “comet-like” tail or a short “croissant-like” tail. Here we present the first Lyα absorption investigation using a croissant-like heliosphere. With identical boundary conditions we compare the BU model, which presents a croissant-like tail, and the Moscow model, which presents a comet-like tail. The BU and Moscow models present nearly identical Lyα profiles toward nose targets (α Cen and 36 Oph). Differences in Lyα profiles are shown toward the tail target (HD 35296). Despite the shortened heliotail of the croissant model, significant downwind heliosheath absorption is seen, just 5% shallower and shifted by 4 km s−1. This implies that an extended tail model is not required to reproduce the heliosheath Lyα absorption observations. Finer observation gratings may be able to resolve this shift. Additionally, when using higher interstellar medium (ISM) neutral and plasma densities and lower magnetic field (∣B LISM∣ = 3.2 μG, α BV ≈ 40°) than in the Moscow model, we find better agreement with observed Lyα profiles. None of the models presented show agreement in all directions simultaneously. Furthermore, we show that for the ISM conditions with the least certainty (n p,LISM, n H,LISM, T LISM, B LISM), B LISM has the most significant effect on the structure of the hydrogen wall and Lyα profiles.

Funder

NASA

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3