Revealing the Variation Mechanism of ON 231 via the Two-component Shock-in-jet Model

Author:

Wang Chi-ZhuoORCID,Jiang Yun-GuoORCID

Abstract

Abstract The variation mechanism of blazars is a long-standing unresolved problem. In this work, we present a scenario to explain diverse variation phenomena for ON 231, where the jet emissions are composed of the flaring and the less variable components (most probably from the post-flaring blobs), and the variation is dominated by shock-in-jet instead of the Doppler effect. We perform correlation analysis for the multiwavelength light curves and find no significant correlations. For the optical band, ON 231 exhibits a harder when brighter (HWB) trend, and the trend seems to shift at different periods. Correspondingly, the correlation between the degree of polarization and flux exhibits a V-shaped behavior, and a similar translation relation during different periods is also found. These phenomena could be understood via the superposition of the flaring component and slowly varying background component. We also find that the slopes of the HWB trend become smaller at higher flux levels, which indicates the energy-dependent acceleration processes of the radiative particles. For the X-ray band, we discover a trend transition from HWB to softer when brighter (SWB) to HWB. We consider that the X-ray emission is composed of both the synchrotron tail and the synchrotron self-Compton components, which could be described by two log-parabolic functions. By varying the peak frequency, we reproduce the observed trend transition in a quantitative manner. For the γ-ray band, we find the SWB trend, which could be explained naturally if a very-high-energy γ-ray background component exists. Our study elucidates the variation mechanism of intermediate synchrotron-peaked BL Lac objects.

Funder

MOST ∣ National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3