Quantifying the High Early Solar Cosmic-Ray Flux with Cosmogenic Neon Isotopes in Refractory Minerals

Author:

Yang XinORCID,Ciesla Fred J.ORCID,Heck Philipp R.ORCID

Abstract

Abstract An enhancement in the activity of the early young Sun resulting in a high charged particle flux has been invoked to explain excesses in spallation-induced nuclides in primitive planetary materials. Astronomical observations of energetic outbursts of young stellar objects (YSOs) also support the idea of an active young Sun. However, the early solar cosmic-ray (SCR) flux has not been well constrained. Here we use measured concentrations of SCR-produced nuclides that formed and are preserved in meteoritical hibonite and spinel, some of the solar system’s oldest solids, and physical models for dust transport in the early protoplanetary disk to determine the magnitude of the early SCR flux. We focus our attention on cosmogenic neon, which cannot have been inherited from precursors and can only be produced in situ in solids. Our modeled effective exposure time to SCRs for these solids is very short, on the order of years. This indicates that the young Sun’s SCR flux recorded in refractory mineral hibonite was up to ∼7 orders of magnitude higher than the contemporary level. Our flux estimate is consistent with the >105× enhanced flux inferred from astronomical observations of greatly enhanced flare activities of YSOs.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3