Modeling Magnetic Disk Wind State Transitions in Black Hole X-Ray Binaries

Author:

Fukumura KeigoORCID,Kazanas DemosthenesORCID,Shrader Chris,Tombesi FrancescoORCID,Kalapotharakos ConstantinosORCID,Behar EhudORCID

Abstract

Abstract We analyze three prototypical black hole X-ray binaries, 4U 1630–472, GRO J1655–40, and H1743–322, in an effort to systematically understand the intrinsic state transition of the observed accretion disk winds between wind-on and wind-off states by utilizing state-of-the-art Chandra/HETGS archival data from multi-epoch observations. We apply our magnetically driven wind models in the context of magnetohydrodynamic (MHD) calculations to constrain (1) their global density slope (p), (2) their density (n 17) at the foot point of the innermost launching radius, and (3) the abundances of heavier elements (A Fe,S,Si). Incorporating the MHD winds into xstar photoionization calculations in a self-consistent manner, we create a library of synthetic absorption spectra given the observed X-ray continua. Our analysis clearly indicates a characteristic bimodal transition of multi-ion X-ray winds; i.e., the wind density gradient is found to steepen (from p ∼ 1.2–1.4 to ∼1.4–1.5) while its density normalization declines as the source transitions from the wind-on to the wind-off state. The model implies that the ionized wind remains physically present even in the wind-off state, despite its apparent absence in the observed spectra. Supersolar abundances for heavier elements are also favored. Our global multi-ion wind models, taking into account soft X-ray ions as well as Fe K absorbers, show that the internal wind condition plays an important role in wind transitions besides photoionization changes. Simulated XRISM/Resolve and Athena/X-IFU spectra are presented to demonstrate a high fidelity of the multi-ion wind model for a better understanding of these powerful ionized winds in the coming decades.

Funder

NASA/ADAP

Chandra AO20

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3