The S-Web Origin of Composition Enhancement in the Slow-to-moderate Speed Solar Wind

Author:

Lynch B. J.ORCID,Viall N. M.ORCID,Higginson A. K.ORCID,Zhao L.ORCID,Lepri S. T.ORCID,Sun X.ORCID

Abstract

Abstract Connecting the solar wind observed throughout the heliosphere to its origins in the solar corona is one of the central aims of heliophysics. The variability in the magnetic field, bulk plasma, and heavy ion composition properties of the slow wind are thought to result from magnetic reconnection processes in the solar corona. We identify regions of enhanced variability and composition in the solar wind from 2003 April 15 to May 13 (Carrington Rotation 2002), observed by the Wind and Advanced Composition Explorer spacecraft, and demonstrate their relationship to the separatrix–web (hereafter, S-Web) structures describing the corona’s large-scale magnetic topology. There are four pseudostreamer (PS) wind intervals and two helmet streamer (HS) heliospheric current sheet/plasma sheet crossings (and an interplanetary coronal mass ejection), which all exhibit enhanced alpha-to-proton ratios and/or elevated ionic charge states of carbon, oxygen, and iron. We apply the magnetic helicity–partial variance of increments (H m –PVI) procedure to identify coherent magnetic structures and quantify their properties during each interval. The mean duration of these structures are ∼1 hr in both the HS and PS wind. We find a modest enhancement above the power-law fit to the PVI waiting-time distribution in the HS-associated wind at the 1.5–2 hr timescales that is absent from the PS intervals. We discuss our results in the context of previous observations of the ∼90 minutes periodic density structures in the slow solar wind, further development of the dynamic S-Web model, and future Parker Solar Probe and Solar Orbiter joint observational campaigns.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3