Analyses of ∼0.05–2 MeV Ions Associated with the 2022 February 16 Energetic Storm Particle Event Observed by Parker Solar Probe

Author:

Giacalone JoeORCID,Cohen C. M. S.ORCID,McComas D. J.ORCID,Chen X.ORCID,Dayeh M. A.ORCID,Matthaeus W. H.ORCID,Klein K. G.ORCID,Bale S. D.ORCID,Christian E. R.ORCID,Desai M. I.ORCID,Hill M. E.ORCID,Khoo L. Y.,Lario D.ORCID,Leske R. A.ORCID,McNutt R. L.ORCID,Mitchell D. G.ORCID,Mitchell J. G.ORCID,Malandraki O.ORCID,Schwadron N. A.ORCID

Abstract

Abstract We present analyses of 0.05–2 MeV ions from the 2022 February 16 energetic storm particle event observed by Parker Solar Probe's (PSP) IS⊙IS/EPI-Lo instrument at 0.35 au from the Sun. This event was characterized by an enhancement in ion fluxes from a quiet background, increasing gradually with time with a nearly flat spectrum, rising sharply near the arrival of the coronal mass ejection (CME)–driven shock, becoming nearly a power-law spectrum, then decaying exponentially afterward, with a rate that was independent of energy. From the observed fluxes, we determine diffusion coefficients, finding that far upstream of the shock the diffusion coefficients are nearly independent of energy, with a value of 1020 cm2 s−1. Near the shock, the diffusion coefficients are more than 1 order of magnitude smaller and increase nearly linearly with energy. We also determine the source of energetic particles, by comparing ratios of the intensities at the shock to estimates of the quiet-time intensity to predictions from diffusive shock acceleration theory. We conclude that the source of energetic ions is mostly the solar wind for this event. We also present potential interpretations of the near-exponential decay of the intensity behind the shock. One possibility we suggest is that the shock was overexpanding when it crossed PSP and the energetic particle intensity decreased behind the shock to fill the expanding volume. Overexpanding CMEs could well be more common closer to the Sun, and this is an example of such a case.

Funder

NASA

NSF

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3