Abstract
Abstract
A low-lying resonance in FeCN− anion was identified through abrupt changes in the spectral dependence of the photoelectron angular distribution. Non-Franck–Condon transitions from the resonance to the neutral FeCN (4Δ), and the corresponding photoelectron angular distributions revealed that the resonance is a dipole scattering state. Significant thermionic electron emission was observed in the resonant photoelectron spectra, indicating a strong coupling of the resonance with the ground state of this triatomic anion and its competition over autodetachment. This low-lying resonance is identified to be an efficient pathway for the formation of FeCN− anion in the outer envelope of IRC+10216. The results in general reveal formation pathways in space for anions with low-lying resonances and large permanent dipole moment.
Funder
Department of Science and Technology, India
Indian Space Research Organisation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献