The Expansion of the X-Ray Nebula Around η Car

Author:

Corcoran Michael F.ORCID,Hamaguchi K.ORCID,Smith NathanORCID,Stevens I. R.ORCID,Moffat A. F. J.ORCID,Richardson Noel D.ORCID,Weigelt GerdORCID,Espinoza-Galeas DavidORCID,Damineli AugustoORCID,Gull Theodore R.ORCID,Russell C. M. P.

Abstract

Abstract The massive colliding wind binary system η Car is embedded in an X-ray emitting region having a characteristic temperature of a few million degrees, associated with ejecta produced during the 1840s, and in earlier outbursts. We use CHANDRA X-ray imaging observations obtained over the past two decades to directly measure the expansion of the X-ray nebula for the first time. A combined CHANDRA/ACIS image shows a faint, nearly uniform elliptic structure. This faint elliptical “shell” has a similar orientation and shape as the Homunculus nebula but is about 3 times larger. We measure proper motions of brighter regions associated with the X-ray emitting ring. We compare spectra of the soft X-ray emitting plasma in CHANDRA/ACIS and XMM-Newton PN observations and show that the PN observations indicate a decline in X-ray flux which is comparable to that derived from NICER observations. We associate the diffuse elliptical emission surrounding the bright X-ray “ring” with the blast wave produced during the Great Eruption. We suggest that the interaction of this blast wave with pre-existing clumps of ejecta produces the bright, broken X-ray emitting ring. We extrapolate the trend in X-ray energy back to the time of the Great Eruption using a simple model and show that the X-ray energy was comparable to the kinetic energy of the Homunculus, suggesting equipartition of energy between fast, low-density ejecta and slower, dense ejecta.

Funder

SI ∣ Smithsonian Astrophysical Observatory

NASA Grant

SAO Grant

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3