Polarized Signatures of a Habitable World: Comparing Models of an Exoplanet Earth with Visible and Near-infrared Earthshine Spectra

Author:

Gordon Kenneth E.ORCID,Karalidi TheodoraORCID,Bott Kimberly M.ORCID,Miles-Páez Paulo A.ORCID,Mulder WillekeORCID,Stam Daphne M.ORCID

Abstract

Abstract In the JWST, Extremely Large Telescopes, and LUVOIR era, we expect to characterize a number of potentially habitable Earth-like exoplanets. However, the characterization of these worlds depends crucially on the accuracy of theoretical models. Validating these models against observations of planets with known properties will be key for the future characterization of terrestrial exoplanets. Due to its sensitivity to the micro- and macro-physical properties of an atmosphere, polarimetry will be an important tool that, in tandem with traditional flux-only observations, will enhance the capabilities of characterizing Earth-like planets. In this paper we benchmark two different polarization-enabled radiative-transfer codes against each other and against unique linear spectropolarimetric observations of the earthshine that cover wavelengths from ∼0.4 to ∼2.3 μm. We find that while the results from the two codes generally agree with each other, there is a phase dependency between the compared models. Additionally, with our current assumptions, the models from both codes underestimate the level of polarization of the earthshine. We also report an interesting discrepancy between our models and the observed 1.27 μm O2 feature in the earthshine, and provide an analysis of potential methods for matching this feature. Our results suggest that only having access to the 1.27 μm O2 feature coupled with a lack of observations of the O2 A and B bands could result in a mischaracterization of an Earth-like atmosphere. Providing these assessments is vital to aid the community in the search for life beyond the solar system.

Funder

NASA Habitable Worlds Program

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The development of HISPEC for Keck and MODHIS for TMT: science cases and predicted sensitivities;Techniques and Instrumentation for Detection of Exoplanets XI;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3