Radiation Hydrodynamics of Turbulent H ii Regions in Molecular Clouds: A Physical Origin of LyC Leakage and the Associated Lyα Spectra

Author:

Kakiichi KokiORCID,Gronke MaxORCID

Abstract

Abstract We examine Lyman continuum (LyC) leakage through H ii regions regulated by turbulence and radiative feedback in a giant molecular cloud in the context of fully coupled radiation hydrodynamics (RHD). The physical relations of the LyC escape with H i covering fraction, kinematics, ionizing photon production efficiency, and emergent Lyα line profiles are studied using a series of RHD turbulence simulations performed with ramses-rt. The turbulence-regulated mechanism allows ionizing photons to leak out at early times before the onset of supernova feedback. The LyC photons escape through turbulence-generated low column density channels that are evacuated efficiently by radiative feedback via photoheating-induced shocks across the D-type ionization fronts. The Lyα photons funnel through the photoionized channels along the paths of LyC escape, resulting in a diverse Lyα spectral morphology including narrow double-peaked profiles. The Lyα peak separation is controlled by the residual H i column density of the channels, and the line asymmetry correlates with the porosity and multiphase structure of the H ii region. This mechanism through the turbulent H ii regions can naturally reproduce the observed Lyα spectral characteristics of some of the LyC-leaking galaxies. This RHD turbulence origin provides an appealing hypothesis to explain high LyC leakage from very young (∼3 Myr) star-forming galaxies found in the local universe without need of extreme galactic outflows or supernova feedback. We discuss the implications of the turbulent H ii regions on other nebular emission lines and a possible observational test with the Magellanic System and local blue compact dwarf galaxies as analogs of reionization-era systems.

Funder

European Research Council

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3