Direct In Situ Measurements of a Fast Coronal Mass Ejection and Associated Structures in the Corona

Author:

Liu Ying D.ORCID,Zhu BeiORCID,Ran HaoORCID,Hu HuidongORCID,Liu MingzheORCID,Zhao Xiaowei,Wang Rui,Stevens Michael L.ORCID,Bale Stuart D.ORCID

Abstract

Abstract We report on the first direct in situ measurements of a fast coronal mass ejection (CME) and shock in the corona, which occurred on 2022 September 5. In situ measurements from the Parker Solar Probe spacecraft near perihelion suggest two shocks, with the second one decayed, which is consistent with more than one eruption in coronagraph images. Despite a flank crossing, the measurements indicate unique features of the young ejecta: a plasma much hotter than the ambient medium, suggestive of a hot solar source, and a large plasma β implying a highly non-force-free state and the importance of thermal pressure gradient for CME acceleration and expansion. Reconstruction of the global coronal magnetic fields shows a long-duration change in the heliospheric current sheet (HCS), and the observed field polarity reversals agree with a more warped HCS configuration. Reconnection signatures are observed inside an HCS crossing as deep as the sonic critical point. As the reconnection occurs in the sub-Alfvénic wind, the reconnected flux sunward of the reconnection site can close back to the Sun, which helps balance magnetic flux in the heliosphere. The nature of the sub-Alfvénic wind after the HCS crossing as a low Mach-number boundary layer (LMBL) leads to in situ measurements of the near subsonic plasma at a surprisingly large distance. Specifically, an LMBL may provide favorable conditions for the crossings of the sonic critical point in addition to the Alfvén surface.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3