Haze Formation on Triton

Author:

Ohno KazumasaORCID,Zhang Xi,Tazaki RyoORCID,Okuzumi SatoshiORCID

Abstract

Abstract The largest moon of Neptune, Triton, possesses a cold and hazy atmosphere. Since the discovery of the near-surface haze layer during the Voyager fly in 1989, the haze formation mechanism has not been investigated in detail. Here we provide the first haze microphysical model on Triton. Our model solves the evolution of both size and porosity distributions of haze particles in a self-consistent manner. We simulated the formation of sphere and aggregate hazes with and without condensation of the C2H4 ice. The haze particles can grow into fractal aggregates with mass-equivalent sphere sizes of ∼0.1–1 μm and fractal dimensions of D f = 1.8–2.2. The ice-free hazes cannot simultaneously explain both UV and visible observations of Voyager 2, while including the condensation of C2H4 ices provides two better solutions. For ice aggregates, the required total haze mass flux is ∼2 × 10−15 g cm−2 s−1. For the icy sphere scenario, the column-integrated C2H4 production rate is ∼8 × 10−15 g cm−2 s−1, and the ice-free mass flux is ∼6 × 10−17 g cm−2 s−1. The UV occultation observations at short wavelengths, <0.15 μm, may slightly favor the icy aggregates. Observations of the haze optical depth and the degree of forward scattering in UV and visible should be able to distinguish whether Triton’s hazes are icy spheres or ice aggregates in future Triton missions.

Funder

Xi Zhang

Kazumasa Ohno

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3