Efficiency of Nonthermal Pulsed Emission from Eight MeV Pulsars

Author:

Takata J.ORCID,Wang H.-H.,Lin L. C.-C. ,,Kisaka S.ORCID

Abstract

Abstract We report on the properties of pulsed X-ray emission from eight MeV pulsars using XMM-Newton, NICER, NuSTAR, and HXMT data. For five of the eight MeV pulsars, the X-ray spectra can be fit by a broken power-law model with a break energy of ∼5–10 keV. The photon indices below and above the break energy are ∼1 and ∼1.5, respectively. In comparison with the X-ray emission of the Fermi-LAT pulsars, the MeV pulsars have a harder spectrum and a higher radiation efficiency in the 0.3–10 keV energy bands. When isotropic emission is assumed, the emission efficiency in the keV–MeV bands is estimated to be η MeV ∼ 0.01–0.1, and this is similar to the efficiency of the GeV emission of the Fermi-LAT pulsars with a similar spin-down power. To explain the observed efficiency of the MeV pulsars, we estimate the required pair multiplicity as 104–7, which depends on the emission process (curvature radiation or synchrotron radiation) and on the location in the magnetosphere. The high multiplicity indicates that the secondary pairs that are created by a pair-creation process of the GeV photons produce the X-ray/soft gamma-ray emission of the MeV pulsars. We speculate that the difference between MeV pulsars and Fermi-LAT pulsars can be attributed to the difference in viewing angle measured from the spin axis if the emission originates from a region inside the light cylinder (canonical gap model) or to the difference in the inclination angle of the magnetic axis if the emission is produced in the equatorial current sheet outside the light cylinder.

Funder

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Insight-HXMT Research Progress Since 2023;Chinese Journal of Space Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3