Abstract
Abstract
Many of the short-lived radioactive nuclei that were present in the early solar system can be produced in massive stars. In the first paper in this series, we focused on the production of 26Al in massive binaries. In our second paper, we considered rotating single stars; two more short-lived radioactive nuclei, 36Cl and 41Ca; and the comparison to the early solar system data. In this work, we update our previous conclusions by further considering the impact of binary interactions. We used the MESA stellar evolution code with an extended nuclear network to compute massive (10–80 M
⊙), binary stars at various initial periods and solar metallicity (Z = 0.014), up to the onset of core collapse. The early solar system abundances of 26Al and 41Ca can be matched self-consistently by models with initial masses ≥25 M
⊙, while models with initial primary masses ≥35 M
⊙ can also match 36Cl. Almost none of the models provide positive net yields for 19F, while for 22Ne the net yields are positive from 30 M
⊙ and higher. This leads to an increase by a factor of approximately 4 in the amount of 22Ne produced by a stellar population of binary stars, relative to single stars. In addition, besides the impact on the stellar yields, our 10 M
⊙ primary star undergoing Case A mass transfer ends its life as a white dwarf instead of as a core-collapse supernova. This demonstrates that binary interactions can also strongly impact the evolution of stars close to the supernova boundary.
Funder
EC ∣ European Research Council
Fonds Wetenschappelijk Onderzoek
Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements
UKRI ∣ Science and Technology Facilities Council
Magyar Tudományos Akadémia
EC ∣ Horizon 2020 Framework Programme
National Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献