Abstract
Abstract
The vegetation red edge (VRE) is a unique spectral fingerprint of light-harvesting vegetation on Earth and provides a robust remote detectable surface biosignature of exoplanets. To improve the detectability and sensitivity, we have studied the diurnal variability of VRE in the disk-integrated spectra of Earth and also Earth analogs in the case of different observing geometry conditions. Simulation results show that the VRE index varies from <−0.4 to >0.6 at a diurnal timescale for both present and also Late Triassic Earth, and the maximum variation of VRE in 1 day changes by >3 times with different observing geometry conditions. This means that the extraterrestrial light-harvesting vegetation (even if it really exists) will not be efficiently detectable without proper observing geometry conditions and time, especially in the case of the exoplanets covered with thick clouds. The VRE temporal variation curve can also be used to retrieve the cloud cover fraction and continent distribution of exoplanets with relatively high precision. Several observational strategies are proposed to detect the light-harvesting vegetation and retrieve the planetary information from the planet’s VRE variation signals, and a mock observation is also demonstrated.
Funder
National Natural Science Foundation of China
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献