Phase and Morphology of Water-ice Grains Formed in a Cryogenic Laboratory Plasma

Author:

Nicolov AndréORCID,Gudipati Murthy S.ORCID,Bellan Paul M.ORCID

Abstract

Abstract Grains of ice are formed spontaneously when water vapor is injected into a weakly ionized laboratory plasma in which the background gas has been cooled to cryogenic temperatures comparable to those of deep space. These ice grains are levitated indefinitely within the plasma so that their time evolution can be observed under free-floating conditions. Using microscope imaging, ice grains are shown to have a spindle-like fractal structure and grow over time. Both crystalline and amorphous phases of ice are observed using Fourier transform infrared spectroscopy. A mix of crystalline and amorphous grains coexists under certain thermal conditions, and a linear mixing model is used on the ice absorption band surrounding 3.2 μm to examine the ice phase composition and its temporal stability. The extinction spectrum is also affected by inelastic scattering as grains grow, and characteristic grain radii are obtained from Mie scattering theory and compared to size measurements from direct imaging. Observations are used to compare possible ice nucleation mechanisms, and it is concluded that nucleation is likely catalyzed by ions, as ice does not nucleate in the absence of plasma and impurities are not detected. Ice grain properties and infrared extinction spectra show similarity to observations of some astrophysical ices observed in protoplanetary disks, implying that the fractal morphology of the ice and observed processes of homogeneous ice nucleation could occur as well in such astrophysical environments with weakly ionized conditions.

Funder

U.S. Department of Energy

NSF

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3