Spontaneous Formation of Outflows Powered by Rotating Magnetized Accretion Flows in a Galactic Center

Author:

Takasao ShinsukeORCID,Shuto Yuri,Wada KeiichiORCID

Abstract

Abstract We investigate how magnetically driven outflows are powered by a rotating, weakly magnetized accretion flow onto a supermassive black hole using axisymmetric magnetohydrodynamic simulations. Our proposed model focuses on the accretion dynamics on an intermediate scale between the Schwarzschild radius and the galactic scale, which is ∼1–100 pc. We demonstrate that a rotating disk formed on a parsec-scale acquires poloidal magnetic fields via accretion, and this produces an asymmetric bipolar outflow at some point. The formation of the outflow was found to follow the growth of strongly magnetized regions around disk surfaces (magnetic bubbles). The bipolar outflow grew continuously inside the expanding bubbles. We theoretically derived the growth condition of the magnetic bubbles for our model that corresponds to a necessary condition for outflow growth. We found that the north–south asymmetrical structure of the bipolar outflow originates from the complex motions excited by accreting flows around the outer edge of the disk. The bipolar outflow comprises multiple mini-outflows and downflows (failed outflows). The mini-outflows emanate from the magnetic concentrations (magnetic patches). The magnetic patches exhibit inward drifting motions, thereby making the outflows unsteady. We demonstrate that the inward drift can be modeled using a simple magnetic patch model that considers magnetic angular momentum extraction. This study could be helpful for understanding how asymmetric and nonsteady outflows with complex substructures are produced around supermassive black holes without the help of strong radiation from accretion disks or entrainment by radio jets such as molecular outflows in radio-quiet active galactic nuclei, e.g., NGC 1377.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3