A Morphokinematic Study of the Enigmatic Emission Nebula NGC 6164/5 Surrounding the Magnetic O-type Star HD 148937

Author:

Lim BeomduORCID,Nazé YaëlORCID,Chang Seok-JunORCID,Hutsemékers Damien

Abstract

Abstract HD 148937 is a peculiar massive star (Of?p) with a strong magnetic field (1 kG). The hourglass-shaped emission nebula NGC 6164/5 surrounds this star. This nebula is presumed to originate from episodic mass-loss events of the central O-type star, but the detailed formation mechanism is not yet well understood. Grasping its three-dimensional structure is essential to uncovering the origin of this nebula. Here we report the high-resolution multiobject spectroscopic observations of NGC 6164/5 using the GIRAFFE on the 8.2 m Very Large Telescope. Integrated intensity maps constructed from several spectral lines delineate well the overall shape of this nebula, such as the two bright lobes and the inner gas region. The position–velocity diagrams show that the two bright lobes are found to be redshifted and blueshifted, respectively, while the inner region has multiple layers. We consider a geometric model composed of a bilateral outflow harboring nitrogen-enriched knots and expanding inner shells. Its spectral features are then simulated by using a Monte Carlo radiative transfer technique for different sets of velocities. Some position–velocity diagrams from simulations are very similar to the observed ones. According to the model that best reproduces the observational data, the two bright lobes and the nitrogen-enriched knots are moving away from HD 148937 at about 120 km s−1. Their minimum kinematic age is estimated to be about 7500 yr. We discuss possible formation mechanisms of this nebula in the context of binary interaction.

Funder

National Research Foundation of Korea

Publisher

American Astronomical Society

Reference54 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3