Simultaneous High Dynamic Range Algorithm, Testing, and Instrument Simulation

Author:

Mason James PaulORCID,Seaton Daniel B.ORCID,Jones Andrew R.ORCID,Jin MengORCID,Chamberlin Phillip C.ORCID,Sims AlanORCID,Woods Thomas N.ORCID

Abstract

Abstract Within an imaging instrument’s field of view, there may be many observational targets of interest. Similarly, within a spectrograph’s bandpass, there may be many emission lines of interest. The brightness of these targets and lines can be orders of magnitude different, which poses a challenge to instrument and mission design. A single exposure can saturate the bright emission and/or have a low signal-to-noise ratio (S/N) for faint emission. Traditional high dynamic range (HDR) techniques solve this problem by either combining multiple sequential exposures of varied duration or splitting the light to different sensors. These methods, however, can result in the loss of science capability, reduced observational efficiency, or increased complexity and cost. The simultaneous HDR method described in this paper avoids these issues by utilizing a special type of detector whose rows can be read independently to define zones that are then composited, resulting in areas with short or long exposure measured simultaneously. We demonstrate this technique for the Sun, which is bright on disk and faint off disk. We emulated these conditions in the lab to validate the method. We built an instrument simulator to demonstrate the method for a realistic solar imager and input. We then calculated S/Ns, finding a value of 45 for a faint coronal mass ejection and 200 for a bright one, both at 3.5 N —meeting or far exceeding the international standard for digital photography that defines an S/N of 10 as acceptable and 40 as excellent. Future missions should consider this type of hardware and technique in their trade studies for instrument design.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3