Mass–Metallicity Relationship of SDSS Star-forming Galaxies: Population Synthesis Analysis and Effects of Star Burst Length, Extinction Law, Initial Mass Function, and Star Formation Rate

Author:

Sextl Eva,Kudritzki Rolf-Peter,Zahid H. Jabran,Ho I-TingORCID

Abstract

Abstract We investigate the mass–metallicity relationship of star-forming galaxies by analyzing the absorption line spectra of ∼200,000 galaxies in the Sloan Digital Sky Survey. The galaxy spectra are stacked in bins of stellar mass, and a population synthesis technique is applied yielding the metallicities, ages, and star formation history of the young and old stellar population together with interstellar reddening and extinction. We adopt different lengths of the initial starbursts and different initial mass functions for the calculation of model spectra of the single stellar populations contributing to the total integrated spectrum. We also allow for deviations of the ratio of extinction to reddening R V from 3.1 and determine the value from the spectral fit. We find that burst length and R V have a significant influence on the determination of metallicities, whereas the effect of the initial mass function is small. The R V values are larger than 3.1. The metallicities of the young stellar population agree with extragalactic spectroscopic studies of individual massive supergiant stars and are significantly higher than those of the older stellar population. This confirms galaxy evolution models where metallicity depends on the ratio of gas to stellar mass and where this ratio decreases with time. Star formation history is found to depend on galaxy stellar mass. Massive galaxies are dominated by stars formed at early times.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3