Proper Motions, Orbits, and Tidal Influences of Milky Way Dwarf Spheroidal Galaxies

Author:

Pace Andrew B.ORCID,Erkal DenisORCID,Li Ting S.ORCID

Abstract

Abstract We combine Gaia early data release 3 astrometry with accurate photometry and utilize a probabilistic mixture model to measure the systemic proper motion of 52 dwarf spheroidal (dSph) satellite galaxies of the Milky Way (MW). For the 46 dSphs with literature line-of-sight velocities we compute orbits in both a MW and a combined MW + Large Magellanic Cloud (LMC) potential and identify Car II, Car III, Hor I, Hyi I, Phx II, and Ret II as likely LMC satellites. 40% of our dSph sample has a >25% change in pericenter and/or apocenter with the MW + LMC potential. For these orbits, we use a Monte Carlo sample for the observational uncertainties for each dSph and the uncertainties in the MW and LMC potentials. We predict that Ant II, Boo III, Cra II, Gru II, and Tuc III should be tidally disrupting by comparing each dSph's average density relative to the MW density at its pericenter. dSphs with large ellipticity (CVn I, Her, Tuc V, UMa I, UMa II, UMi, Wil 1) show a preference for their orbital direction to align with their major axis even for dSphs with large pericenters. We compare the dSph radial orbital phase to subhalos in MW-like N-body simulations and infer that there is not an excess of satellites near their pericenter. With projections of future Gaia data releases, we find that dSph's orbital precision will be limited by uncertainties in the distance and/or MW potential rather than in proper motion precision. Finally, we provide our membership catalogs to enable community follow-up.

Funder

National Science Foundation

Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3