Filament Formation due to Diffusive Instabilities in Dusty Protoplanetary Disks

Author:

Gerbig KonstantinORCID,Lin 林 Min-Kai 明楷ORCID,Lehmann MariusORCID

Abstract

Abstract We report the finding of a new, local diffusion instability in a protoplanetary disk which can operate in a dust fluid, subject to mass diffusion, shear viscosity, and dust–gas drag, provided the diffusivity, viscosity, or both, decrease sufficiently rapidly with increasing dust surface mass density. We devise a vertically averaged, axisymmetric hydrodynamic model to describe a dense, midplane dust layer in a protoplanetary disk. The gas is modeled as a passive component, imposing an effective, diffusion-dependent pressure, mass diffusivity, and viscosity onto the otherwise collisionless dust fluid, via turbulence excited by the gas alone, or dust and gas in combination. In particular, we argue that such conditions are met when the dust–gas mixture generates small-scale turbulence through the streaming instability, as supported by recent measurements of dust mass diffusion slopes in simulations. We hypothesize that the newly discovered instability may be the origin of filamentary features, almost ubiquitously found in simulations of the streaming instability. In addition, our model allows for growing oscillatory modes, which operate in a similar fashion as the axisymmetric viscous overstability in dense planetary rings. However, it remains speculative if the required conditions for such modes can be met in protoplanetary disks.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3