Distribution Properties of the 6.7 GHz Methanol Masers and Their Surrounding Gases in the Milky Way

Author:

Yang TianORCID,Chen XiORCID,Zhang Yan-KunORCID,Ouyang Xu-JiaORCID,Song Shi-MinORCID,Chen Jia-LiangORCID,Lu YingORCID

Abstract

Abstract An updated catalog consisting of 1092 6.7 GHz methanol maser sources is reported in this work. Additionally, the NH3 (1, 1), NH3 (2, 2), and NH3 (3, 3) transitions were observed toward 214 star-forming regions using the Shanghai Tianma radio telescope in order to examine the differences in physical environments, such as the excitation temperature and column density of molecular clouds associated with methanol masers on the Galactic scale. Statistical results reveal that the number of 6.7 GHz methanol masers in the Perseus arm is significantly lower than that in the other three main spiral arms. In addition, the Perseus arm also has the lowest gas column density among the main spiral arms traced by the NH3 observations. Both findings suggest that the Perseus arm has the lowest rate of high-mass star formation compared to the other three main spiral arms. We also observed a trend in which both the luminosity of the 6.7 GHz methanol masers and the ammonia gas column density decreased with the galactocentric distance. This finding indicates that the density of material in the inner Milky Way is generally higher than that in the outer Milky Way. This further suggests that high-mass stars are more easily formed at the head of the spiral arms. Furthermore, we found that the column density of ammonia gas is higher in the regions on the arms than in the inter-arm regions, supporting that the former is more likely to be the birthplace of high-mass stars.

Funder

the National Key R&D program of China

the National Natural Science Foundation of China

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3