Coaccretion + Giant-impact Origin of the Uranus System: Tilting Impact

Author:

Rufu RalucaORCID,Canup Robin M.ORCID

Abstract

Abstract The origin of the Uranian satellite system remains uncertain. The four major satellites have nearly circular, coplanar orbits, and the ratio of the satellite system to planetary mass resembles Jupiter’s satellite system, suggesting the Uranian system was similarly formed within a disk produced by gas coaccretion. However, Uranus is a retrograde rotator with a high obliquity. The satellites orbit in its highly tilted equatorial plane in the same sense as the planet’s retrograde rotation, a configuration that cannot be explained by coaccretion alone. In this work, we investigate the first stages of the coaccretion + giant-impact scenario proposed by Morbidelli et al. (2012) for the origin of the Uranian system. In this model, a satellite system formed by coaccretion is destabilized by a giant impact that tilts the planet. The primordial satellites collide and disrupt, creating an outer debris disk that can reorient to the planet’s new equatorial plane and accrete into Uranus’ four major satellites. The needed reorientation out to distances comparable to outermost Oberon requires that the impact creates an inner disk with ≥1% of Uranus’ mass. We here simulate giant impacts that appropriately tilt the planet and leave the system with an angular momentum comparable to that of the current system. We find that such impacts do not produce inner debris disks massive enough to realign the outer debris disk to the post-impact equatorial plane. Although our results are inconsistent with the apparent requirements of a coaccretion + giant-impact model, we suggest alternatives that merit further exploration.

Funder

NASA Emerging Words

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3