Recovering Age–Metallicity Distributions from Integrated Spectra: Validation with MUSE Data of a Nearby Nuclear Star Cluster

Author:

Boecker AlinaORCID,Alfaro-Cuello MayteORCID,Neumayer NadineORCID,Martín-Navarro IgnacioORCID,Leaman RyanORCID

Abstract

Abstract Current instruments and spectral analysis programs are now able to decompose the integrated spectrum of a stellar system into distributions of ages and metallicities. The reliability of these methods has rarely been tested on nearby systems with resolved stellar ages and metallicities. Here we derive the age–metallicity distribution of M54, the nucleus of the Sagittarius dwarf spheroidal galaxy, from its integrated Multi-Unit Spectroscopic Explorer (MUSE) spectrum. We find a dominant old (8–14 Gyr), metal-poor (−1.5 dex) component and a young (1 Gyr), metal-rich (+0.25 dex) component—consistent with the complex stellar populations measured from individual stars in the same MUSE data set. There is excellent agreement between the (mass-weighted) average age and metallicity of the resolved and integrated analyses. Differences are only 3% in age and 0.2 dex metallicity. By co-adding individual stars to create M54's integrated spectrum, we show that the recovered age–metallicity distribution is insensitive to the magnitude limit of the stars or the contribution of blue horizontal branch stars—even when including additional blue wavelength coverage from the WiFeS Atlas of Galactic Globular cluster Spectra survey. However, we find that the brightest stars can induce the spurious recovery of an old (>8 Gyr), metal-rich (+0.25 dex) stellar population, which is otherwise not expected from our understanding of chemical enrichment in M54. The overall derived stellar mass-to-light ratio of M54 is M/L V = 1.46 with a scatter of 0.22 across the field of view, which we attribute to the stochastic contribution of a young, metal-rich component. These findings provide strong evidence that complex stellar population distributions can be reliably recovered from integrated spectra of extragalactic systems.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3