Abstract
Abstract
The correlation between black hole mass and the stellar mass of the bulge of the host galaxy has attracted much attention ever since its discovery. While traditional investigations of this correlation have treated elliptical galaxies as single, monolithic spheroids, the recent realization that massive elliptical galaxies have undergone significant late-time (
) dissipationless assembly since their initially dense “red nugget” phase strongly suggests that black holes in present-day ellipticals should be associated only with their cores and not with their extended envelopes. We perform two-dimensional image decomposition of Two Micron All Sky Survey K
s
-band images to derive the stellar mass of the cores of 35 nearby ellipticals with reliably measured black hole masses. We revisit the relation between black hole mass and bulge stellar mass by combining classical bulges with the cores of ellipticals. The new relation exhibits nearly identical slope (
) as the conventional relation but a factor of ∼2 higher normalization and moderately larger intrinsic scatter (0.4 dex). At a core mass of
,
, but it rises to
for the most massive cores with mass
. Fast and slow rotator ellipticals follow the same correlation. The
relation provides a revised benchmark for studies of black hole–galaxy coevolution in the high-redshift universe.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献