The PAndAS View of the Andromeda Satellite System. IV. Global Properties

Author:

Doliva-Dolinsky AmandineORCID,Martin Nicolas F.ORCID,Yuan ZhenORCID,Savino AlessandroORCID,Weisz Daniel R.ORCID,Ferguson Annette M. N.ORCID,Ibata Rodrigo A.ORCID,Kim Stacy Y.,Lewis Geraint F.ORCID,McConnachie Alan W.ORCID,Thomas Guillaume F.ORCID

Abstract

Abstract We build a statistical framework to infer the global properties of the satellite system of the Andromeda galaxy (M31) from the properties of individual dwarf galaxies located in the Pan-Andromeda Archaelogical Survey (PAndAS) and the previously determined completeness of the survey. Using forward modeling, we infer the slope of the luminosity function of the satellite system, the slope of its spatial density distribution, and the size–luminosity relation followed by the dwarf galaxies. We find that the slope of the luminosity function is β = −1.5 ± 0.1. Combined with the spatial density profile, it implies that, when accounting for survey incompleteness, M31 hosts 92 26 + 19 dwarf galaxies with M V < −5.5 and a sky-projected distance from M31 between 30 and 300 kpc. We conclude that many faint or distant dwarf galaxies remain to be discovered around Andromeda, especially outside the PAndAS footprint. Finally, we use our model to test if the higher number of satellites situated in the hemisphere facing the Milky Way could be explained simply by the detection limits of dwarf galaxy searches. We rule this out at >99.9% confidence and conclude that this anisotropy is an intrinsic feature of the M31 satellite system. The statistical framework we present here is a powerful tool to robustly constrain the properties of a satellite system and compare those across hosts, especially considering the upcoming start of the Euclid or Rubin large photometric surveys that are expected to uncover a large number of dwarf galaxies in the Local Volume.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3