Formulating the r-mode Problem for Slowly Rotating Neutron Stars

Author:

Andersson Nils,Gittins Fabian

Abstract

Abstract We revisit the problem of inertial r-modes in stratified stars, drawing on a more precise description of the composition stratification in a mature neutron star. The results highlight issues with the traditional approach to the problem, leading us to rethink the computational strategy for the r-modes of nonbarotropic neutron stars. We outline two strategies for dealing with the problem. For moderate to slowly rotating neutron stars the only viable alternative may be to approach the problem numerically from the outset, while a meaningful slow-rotation calculation can be carried out for the fastest known spinning stars (which may be close to being driven unstable by the emission of gravitational waves). We demonstrate that the latter approach leads to a problem close, but not identical, to that for barotropic inertial modes. We also suggest that these reformulations of the problem likely resolve the long-standing problem of singular behavior associated with a corotation point in rotating relativistic neutron stars. This issue needs to be resolved in order to guide future gravitational-wave searches.

Funder

UKRI ∣ Science and Technology Facilities Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3