A New Tool for Understanding the Solar Wind–Venus Interaction: Three-dimensional Multifluid MHD Model

Author:

Dang TongORCID,Zhang BinzhengORCID,Yan MaodongORCID,Lyon John,Yao ZhonghuaORCID,Xiao Sudong,Zhang Tielong,Lei JiuhouORCID

Abstract

Abstract In this paper, we present a new tool to investigate the interaction of the solar wind with Venus with the approach of a global multifluid magnetohydrodynamics (MHD) model. The continuity, momentum, and energy equations for H+, O+, O 2 + , and CO 2 + are solved self-consistently together with Faraday’s law. The photochemistry of ionospheric ions are considered as the source term in the density, momentum, and energy equations for each ion. We found that the simulated ionospheric density, temperature, and the bow shock location are consistent with previous observations and simulations for both the solar maximum and minimum. The simulated magnetic fields also agree well with the Venus Express observations. Meanwhile, the high-resolving power and low numerical diffusion makes the model capable of capturing the fine structures of the Venusian-induced magnetosphere, such as the Kelvin–Helmholtz instability and the nightside wake. The escape rates have also been estimated and the results are similar to previous estimations. The high-resolution model could be an efficient tool for the exploration of the fine structures of the Venusian space environment system, and also for the application to other unmagnetized planets.

Funder

B-type Strategic Priority Program of CAS

National Natural Science Foundation of China

the Project of Stable Support for Youth Team in Basic Research Field, CAS

the Pre-research Project on Civil Aerospace Technologies funded by China’s National Space Administration

the Fundamental Research Funds for the Central Universities

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. About the magnetic barrier of Venus;Planetary and Space Science;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3