An Empirical Calibration of the Tip of the Red Giant Branch Distance Method in the Near Infrared. I. Hubble Space Telescope WFC3/IR F110W and F160W Filters

Author:

Newman Max J. B.ORCID,McQuinn Kristen B. W.ORCID,Skillman Evan D.ORCID,Boyer Martha L.ORCID,Cohen Roger E.ORCID,Dolphin Andrew E.ORCID,Telford O. GraceORCID

Abstract

Abstract The tip of the red giant branch (TRGB) based distance method in the I band is one of the most efficient and precise techniques for measuring distances to nearby galaxies (D ≲ 15 Mpc). The TRGB in the near-infrared (NIR) is 1–2 mag brighter relative to the I band, and has the potential to expand the range over which distance measurements to nearby galaxies are feasible. Using Hubble Space Telescope (HST) imaging of 12 fields in eight nearby galaxies, we determine color-based corrections and zero-points of the TRGB in the Wide Field Camera 3 IR (WFC3/IR) F110W and F160W filters. First, we measure TRGB distances in the I band equivalent Advanced Camera System (ACS) F814W filter from resolved stellar populations with the HST. The TRGB in the ACS F814W filter is used for our distance anchor and to place the WFC3/IR magnitudes on an absolute scale. We then determine the color dependence (a proxy for metallicity/age) and zero-point of the NIR TRGB from photometry of WFC3/IR fields that overlap with the ACS fields. The new calibration is accurate to ∼1% in distance relative to the F814W TRGB. Validating the accuracy of the calibrations, we find that the distance modulus for each field using the NIR TRGB calibration agrees with the distance modulus of the same field as determined from the F814W TRGB. This is a JWST preparatory program, and the work done here will directly inform our approach to calibrating the TRGB in JWST NIRCam and NIRISS photometric filters.

Funder

Space Telescope Science Institute

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3