The Hawaii Infrared Parallax Program. VI. The Fundamental Properties of 1000+ Ultracool Dwarfs and Planetary-mass Objects Using Optical to Mid-infrared Spectral Energy Distributions and Comparison to BT-Settl and ATMO 2020 Model Atmospheres

Author:

Sanghi AniketORCID,Liu Michael C.ORCID,Best William M. J.ORCID,Dupuy Trent J.ORCID,Siverd Robert J.ORCID,Zhang ZhoujianORCID,Hurt Spencer A.ORCID,Magnier Eugene A.ORCID,Aller Kimberly M.ORCID,Deacon Niall R.ORCID

Abstract

Abstract We derive the bolometric luminosities (L bol) of 865 field-age and 189 young ultracool dwarfs (spectral types M6–T9, including 40 new discoveries presented here) by directly integrating flux-calibrated optical to mid-infrared (MIR) spectral energy distributions (SEDs). The SEDs consist of low-resolution (R ∼ 150) near-infrared (NIR; 0.8–2.5μm) spectra (including new spectra for 97 objects), optical photometry from the Pan-STARRS1 survey, and MIR photometry from the CatWISE2020 survey and Spitzer/IRAC. Our L bol calculations benefit from recent advances in parallaxes from Gaia, Spitzer, and UKIRT, as well as new parallaxes for 19 objects from CFHT and Pan-STARRS1 presented here. Coupling our L bol measurements with a new uniform age analysis for all objects, we estimate substellar masses, radii, surface gravities, and effective temperatures (T eff) using evolutionary models. We construct empirical relationships for L bol and T eff as functions of spectral type and absolute magnitude, determine bolometric corrections in optical and infrared bandpasses, and study the correlation between evolutionary model-derived surface gravities and NIR gravity classes. Our sample enables a detailed characterization of BT-Settl and ATMO 2020 atmospheric model systematics as a function of spectral type and position in the NIR color–magnitude diagram. We find the greatest discrepancies between atmospheric and evolutionary model-derived T eff (up to 800 K) and radii (up to 2.0 R Jup) at the M/L spectral type transition boundary. With 1054 objects, this work constitutes the largest sample to date of ultracool dwarfs with determinations of their fundamental parameters.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

Space Telescope Science Institute

UKRI ∣ Science and Technology Facilities Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3