RAIKOU (来光): A General Relativistic, Multiwavelength Radiative Transfer Code

Author:

Kawashima TomohisaORCID,Ohsuga KenORCID,Takahashi Hiroyuki R.ORCID

Abstract

Abstract We present a general relativistic radiative transfer code RAIKOU (来光) for multiwavlength studies of spectra and images including the black hole shadows around Kerr black holes. Important radiative processes in hot plasmas around black holes, i.e., (cyclo-)synchrotron, bremsstrahlung emission/absorption, and Compton/inverse-Compton scattering, are incorporated. The Maxwell–Jüttner and single/broken power-law electron distribution functions are implemented to calculate the radiative transfer via both thermal and nonthermal electrons. Two calculation algorithms are implemented for studies of the images and broadband spectra. An observer-to-emitter ray-tracing algorithm, which inversely solves the radiative transfer equation from the observer screen to emitting plasmas, is suitable for an efficient calculations of the images, e.g., the black hole shadows observed by the Event Horizon Telescope, and spectra without Compton effects. On the other hand, an emitter-to-observer Monte Carlo algorithm, by which photons are transported with a Monte Carlo method including the effects of Compton/inverse-Compton scatterings, enables us to compute multiwavelength spectra, with their energy bands broadly ranging from radio to very high energy gamma-ray. The X-ray black hole shadows, which are formed via synchrotron emission and inverse-Compton scattering processes and will be observed in the future X-ray interferometry missions, can be also computed with this algorithm. The code is generally applicable to accretion flows around Kerr black holes with relativistic jets and winds/coronae with various mass accretion rates (i.e., radiatively inefficient accretion flows, super-Eddington accretion flows, and others). We demonstrate an application of the code to a radiatively inefficient accretion flow onto a supermassive black hole.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3