STITCH: A Subgrid-scale Model for Energy Buildup in the Solar Corona

Author:

Dahlin J. T.ORCID,DeVore C. R.ORCID,Antiochos S. K.ORCID

Abstract

Abstract The solar corona routinely exhibits explosive activity, in particular coronal mass ejections and their accompanying eruptive flares, which have global-scale consequences. These events and their smaller counterparts, coronal jets, originate in narrow, sinuous filament channels. The key processes that form and evolve the channels operate on still smaller spatial scales and much longer timescales, culminating in a vast separation of characteristic lengths and times that govern these explosive phenomena. In this article, we describe implementation and tests of an efficient subgrid-scale model for generating eruptive structures in magnetohydrodynamics (MHD) coronal simulations. STITCH—STatistical InjecTion of Condensed Helicity—is a physics-based, reduced representation of helicity condensation: a process wherein small-scale vortical surface convection forms ubiquitous current sheets and pervasive reconnection across the sheets mediates an inverse cascade of magnetic helicity and free energy, thereby forming the filament channels. We have developed a formalism, STITCH, that abstracts these complex processes into a single term in Ohm’s law and the induction equation that directly injects tangential magnetic flux into the low corona. We show that our approach is in very good agreement with a full helicity condensation calculation that treats all of the dynamics explicitly, while enabling substantial reductions in temporal duration and spatial resolution. In addition, we illustrate the flexibility of STITCH at forming localized filament channels and at energizing complex surface flux distributions that have sinuous boundaries. STITCH is simple to implement and computationally efficient, making it a powerful technique for physics-based modeling of solar eruptive events.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3