Fluorine Abundances in the Galactic Nuclear Star Cluster

Author:

Guerço RafaelORCID,Ramírez Solange,Cunha KatiaORCID,Smith Verne V.ORCID,Prantzos NikosORCID,Sellgren KrisORCID,Daflon SimoneORCID

Abstract

Abstract Abundances of fluorine (19F), as well as isotopic ratios of 16O/17O, are derived in a sample of luminous young (∼107–108 yr) red giants in the Galactic center (with galactocentric distances ranging from 0.6–30 pc), using high-resolution infrared spectra and vibration-rotation lines of H19F near λ2.3 μm. Five of the six red giants are members of the Nuclear star cluster that orbits the central supermassive black hole. Previous investigations of the chemical evolution of 19F in Galactic thin and thick-disk stars have revealed that the nucleosynthetic origins of 19F may be rather complex, resulting from two, or more, astrophysical sites; fluorine abundances behave as a primary element with respect to Fe abundances for thick-disk stars and as a secondary element in thin-disk stars. The Galactic center red giants analyzed fall within the thin-disk relation of F with Fe, having near-solar, to slightly larger, abundances of Fe (〈[Fe/H]〉 = +0.08 ± 0.04), with a slight enhancement of the F/Fe abundance ratio (〈[F/Fe]〉 = +0.28 ± 0.17). In terms of their F and Fe abundances, the Galactic center stars follow the thin-disk population, which requires an efficient source of 19F that could be the winds from core-He burning Wolf–Rayet stars, or thermally pulsing AGB stars, or a combination of both. The observed increase of [F/Fe] with increasing [Fe/H] found in thin-disk and Galactic center stars is not predicted by any published chemical evolution models that are discussed, thus a quantitative understanding of yields from the various possible sources of 19F remains unknown.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring fluorine chemical evolution in the Galactic disk: The open cluster perspective;Astronomy & Astrophysics;2024-09

2. Fluorine Abundances in Local Stellar Populations;The Astronomical Journal;2024-05-31

3. Stellar population astrophysics with the TNG;Astronomy & Astrophysics;2024-04

4. M giants with IGRINS;Astronomy & Astrophysics;2024-03-28

5. Stellar Population Astrophysics (SPA) with TNG;Astronomy & Astrophysics;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3