Probing 3D Magnetic Fields Using Thermal Dust Polarization and Grain Alignment Theory

Author:

Hoang ThiemORCID,Truong Bao

Abstract

Abstract Magnetic fields are ubiquitous in the Universe and are thought to play an important role in various astrophysical processes. Polarization of thermal emission from dust grains aligned with the magnetic field is widely used to measure the 2D magnetic field projected onto the plane of the sky, but its component along the line of sight is not yet constrained. Here, we introduce a new method to infer 3D magnetic fields using thermal dust polarization and grain alignment physics. We first develop a physical model of thermal dust polarization using the modern grain alignment theory based on the magnetically enhanced radiative torque alignment theory. We then test this model with synthetic observations of magnetohydrodynamic simulations of a filamentary cloud with our updated POLARIS code. Combining the tested physical polarization model with synthetic polarization, we show that the B-field inclination angles can be accurately constrained by the polarization degree from synthetic observations. Compared to the true 3D magnetic fields, our method based on grain alignment physics is more accurate than the previous methods that assume uniform grain alignment. This new technique paves the way for tracing 3D B-fields using thermal dust polarization and grain alignment theory and for constraining dust properties and grain alignment physics.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Magnetic field at the Galactic centre from multiwavelength dust polarization;Monthly Notices of the Royal Astronomical Society;2024-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3