A Test of Spectroscopic Age Estimates of White Dwarfs Using Wide WD+WD Binaries

Author:

Heintz Tyler M.ORCID,Hermes J. J.ORCID,Tremblay P.-E.ORCID,Ould Rouis Lou BayaORCID,Reding Joshua S.ORCID,Kaiser B. C.ORCID,van Saders Jennifer L.ORCID

Abstract

Abstract White dwarf stars have been used for decades as precise and accurate age indicators. This work presents a test of the reliability of white dwarf total ages when spectroscopic observations are available. We conduct follow-up spectroscopy of 148 individual white dwarfs in widely separated double-white-dwarf (WD+WD) binaries. We supplement the sample with 264 previously published white dwarf spectra, as well as 1292 high-confidence white dwarf spectral types inferred from their Gaia XP spectra. We find that spectroscopic fits to optical spectra do not provide noticeable improvement to the age agreement among white dwarfs in wide WD+WD binaries. The median age agreement is ≈1.5σ for both photometrically and spectroscopically determined total ages, for pairs of white dwarfs with each having a total age uncertainty < 20%. For DA white dwarfs, we further find that photometrically determined atmospheric parameters from spectral energy distribution fitting give better total age agreement (1.0σ, 0.2 Gyr, or 14% of the binary’s average total age) compared to spectroscopically determined parameters from Balmer-line fits (agreement of 1.5σ, 0.3 Gyr, or 28% of binary’s average total age). We find further evidence of a significant merger fraction among wide WD+WD binaries: across multiple spectroscopically identified samples, roughly 20% are inconsistent with a monotonically increasing initial–final mass relation. We recommend the acquisition of an identification spectrum to ensure the correct atmospheric models are used in photometric fits in order to determine the most accurate total age of a white dwarf star.

Funder

National Science Foundation

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The DBL Survey I: discovery of 34 double-lined double white dwarf binaries;Monthly Notices of the Royal Astronomical Society;2024-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3